

Thermochimica Acta 255 (1995) 63-69

thermochimica acta

Excess enthalpies of 1-butanol-2-butanol-*n*-heptane, 1-hexanol-cyclohexanol-*n*-nonane, 2-butanol-*n*-heptane, 1-hexanol-cyclohexanol and cyclohexanol-*n*-nonane at 298.15 K

H. Kirss, M. Kuus, E. Siimer, L. Kudryavtseva*

Institute of Chemistry, Estonian Academy of Sciences, Tallinn EE 0026, Estonia

Received 9 June 1994; accepted 31 August 1994

Abstract

Excess enthalpies for two ternary systems (1-butanol-2-butanol-*n*-heptane and 1-hexanol-cyclohexanol-*n*-nonane) and three binary systems (2-butanol-*n*-heptane, 1-hexanolcyclohexanol and cyclohexanol-*n*-nonane) at 298.15 K have been measured with a Calvet-type microcalorimeter. The Redlich-Kister equation and the UNIFAC(3Q), a version of UNIFAC, fitted to binary H^{E} data, have been applied in predicting ternary excess enthalpies. New group interaction parameters of this version have been determined.

Keywords: Alcohol; Binary system; Excess enthalpy; Liquid mixture; Ternary system

1. Introduction

Systems composed of alcohols with other organic compounds are of considerable theoretical interest and practical importance. Researches on the molar excess enthalpy $(H^{\rm E})$ of these systems provide reliable data for testing model theories of mixtures, for improving group contribution methods and for promoting the understanding of the states, structure and interactions of components in solution.

We have continued our studies of excess enthalpy for ternary systems containing alkanols [1,2] by investigating at 298.15 K the two ternary systems (1-butanol-2-

^{*} Corresponding author.

^{0040-6031/95/\$09.50 © 1995 –} Elsevier Science B.V. All rights reserved SSDI 0040-6031 (95) 02111-2

Table	1
raute	

Excess enthalpies H^E for 2-butanol(1)-*n*-heptane(2), 1-hexanol(1)-cyclohexanol(2) and cyclohexanol(1)-*n*-nonane(2) at 298.15 K

<i>x</i> ₁	H ^E /(J mol	⁻¹)	- x ₁	$H^{\rm E}/({ m J}~{ m mol})$	⁻¹)	
	Exp	Calc		Exp	Calc	
2-Butanol(1)-n-heptane(2)					
0.073	508	507	0.592	810	816	
0.165	755	760	0.694	709	689	
0.296	921	910	0.800	507	517	
0.382	943	944	0.895	295	293	
0.502	891	902				
1-Hexanol(1	l)-cyclohexanol(2)				
0.170	139	136	0.516	176	173	
0.199	142	147	0.540	174	170	
0.260	163	163	0.655	140	148	
0.266	170	164	0.783	101	104	
0.353	171	175	0.815	97	90	
0.373	172	176	0.841	74	77	
0.495	179	174				
Cyclohexan	ol(1)- <i>n</i> -nonane(1	2)				
0.098	615	615	0.479	1119	1111	
0.230	964	966	0.589	1044	1024	
0.251	1000	998	0.663	892	920	
0.313	1071	1068	0.819	630	615	
0.396	1104	1115	0.859	510	517	

butanol-*n*-heptane and 1-hexanol-cyclohexanol-*n*-nonane), and the three binaries 2-butanol-*n*-heptane, 1-hexanol-cyclohexanol and cyclohexanol-*n*-nonane. For the two binary systems containing cyclohexanol we have not found excess enthalpies in the literature, and for the third system the $H^{\rm E}$ data are given at temperatures differing from 298.15 K [3].

Table 2 Coefficients A_i of Eq. (1) and standard deviations $\sigma(H^E)$ in J mol⁻¹ for binary systems

Binary system	A ₀	<i>A</i> ₁	A ₂	<i>A</i> ₃	A ₄	$\sigma(H^{\rm E})$
2-Butanol-n-heptane	3626.43	-953.50	550.89	- 2064.26	2480.76	24.3
1-Hexanol-cyclohexanol	696.25	-163.81	181.55	-285.61		5.6
Cyclohexanol-n-nonane	4404.59	-1073.37	570.88	-706.80	2278.11	18.3
1-Butanol-2-butanol ^a	- 399.80	46.34	-6.68			0.4
1-Butanol- <i>n</i> -heptane ^a	2270.13	979.24	648.17	1339.91	1028.91	10.2
l-Hexanol– <i>n</i> -nonane ^a	2532.20	-690.00	523.06	-1937.05	1031.04	5.2

^a Experimental data for the calculation of coefficients are taken from the literature: 1-butanol-2-butanol [3], 1-butanol-n-heptane [4], 1-hexanol-n-nonane [5].

	-		-				
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$H^{\mathrm{E}}/(\mathrm{J} \mathrm{mol}^{-1})$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$H^{\mathrm{E}}/(\mathrm{mol}^{-1})$
$r_{12} = 0.4$	5 a			$r_{13} = 1.0$) ^a		
0.158	0.308	0.534	746	0.178	0.644	0.178	311
0.275	0.536	0.189	279	0.357	0.286	0.357	506
$r_{12} = 1.0$) ^a			$r_{13} = 2.0$) ^a		
0.099	0.099	0.802	714	0.268	0.600	0.132	220
0.202	0.202	0.596	736	0.494	0.263	0.243	360
0.347	0.347	0.306	473				
0.467	0.467	0.066	33	$r_{23} = 0.4$	5 a		
0.482	0.482	0.036	- 31	0.315	0.226	0.459	644
				0.366	0.209	0.425	599
$r_{12} = 2.0$) a			0.767	0.077	0.156	203
0.092	0.046	0.862	562				
0.391	0.195	0.414	652	$r_{23} = 1.0$) ^a		
0.524	0.262	0.214	265	0.343	0.330	0.327	470
0.608	0.304	0.088	76	0.687	0.157	0.156	170
$r_{13} = 0.5$	5 a			$r_{23} = 2.0$) ^a		
0.114	0.656	0.230	502	0.342	0.442	0.216	357
0.215	0.341	0.434	688	0.411	0.396	0.193	290
				0.841	0.107	0.052	35

Table 3 Excess enthalpies H^{E} at 298.15 K for the system 1-butanol(1)-2-butanol(2)-*n*-heptane(3)

^a Obtained by mixing pure component *j* with a binary mixture i + k in which the mole fraction ratio is $r_{ik} = x_i/x_k$.

Excess enthalpies of the other binary systems which are component binaries of the above ternary systems have been reported previously: those of 1-butanol-n-heptane by Oswald et al. [4], 1-butanol-2-butanol by Murakami and Benson [3] and 1-hexanol-n-nonane by Ortega [5].

The Redlich-Kister equation is used to correlate the binary experimental data and to predict those of ternary systems from binary data alone. The experimental data are compared also with the results predicted by a version of UNIFAC which we have named UNIFAC(3Q) [6].

2. Experimental

Measurements were made in a Calvet-type differential micro-calorimeter. The procedure has been described in our earlier papers [1,2].

n-Heptane and *n*-nonane ("puriss" grade) were supplied by Reakhim (Kharkov, Ukraine) and used without further purification. The alcohols, which were first grade chemicals, were purified by fractional distillation before use in the measurements. Analysis by GLC showed purity levels to be >99.8% for both the *n*-alkanes and 99.5% for the alcohols. Densities measured at 293.15 K were in close agreement with the literature values: *n*-heptane 683.8 kg m⁻³, *n*-nonane 717.6 kg m⁻³,

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$H^{\mathrm{E}}/(\mathrm{J} \mathrm{mol}^{-1})$	x_1	x_2	<i>x</i> ₃	$H^{\mathrm{E}}/(\mathrm{J} \mathrm{mol}^{-1})$
$r_{12} = 0.5$	а — — — — — — — — — — — — — — — — — — —			$r_{13} = 1.0$) a		
0.086	0.172	0.742	893	0.152	0.696	0.152	530
0.125	0.249	0.626	972	0.196	0.608	0.196	623
0.222	0.446	0.332	765	0.313	0.374	0.313	737
0.278	0.557	0.165	525				
				$r_{23} = 1.0$)		
$r_{12} = 1.0$	a			0.236	0.382	0.382	871
0.171	0.171	0.658	856	0.438	0.281	0.281	654
0.318	0.318	0.364	787				
0.411	0.411	0.178	523	$r_{23} = 2.0$) a		
				0.478	0.348	0.174	494
$r_{12} = 2.0$) a			0.688	0.208	0.104	299
0.185	0.093	0.722	744				
0.271	0.136	0.593	810				
0.405	0.203	0.392	724				
0.495	0.247	0.258	570				

Table 4 Excess enthalpies H^{E} at 298.15 K for the system 1-hexanol(1)-cyclohexanol(2)-*n*-nonane(3)

^a Obtained by mixing pure component j with a binary mixture i + k in which the mole fraction ratio is $r_{ik} = x_i/x_k$.

1-butanol 810.0 kg m $^{-3},$ 2-butanol 806.9 kg m $^{-3},$ 1-hexanol 818.7 kg m $^{-3}$ and cyclohexanol 962.5 kg m $^{-3}.$

3. Results

The experimental values of H^{E} for the binary systems studied are compared in Table 1 with those obtained by smoothing them using the Redlich-Kister equation

$$H^{\rm E}/J \, {\rm mol}^{-1} = x_1 (1 - x_1) \sum_{i=0}^n A_i (2x_1 - 1)^i$$
(1)

where x_1 is the mole fraction of the first component. The Redlich-Kister coefficients A_i , with the standard deviations $\sigma(H^E)$, are given in Table 2. The standard deviation is defined by

$$\sigma(H^{\rm E}) = \left[\sum (H^{\rm E}_{\rm exp} - H^{\rm E}_{\rm calc})^2 / (n-m)\right]^{1/2}$$
⁽²⁾

where the sum was taken over the set of n results and m is the number of coefficients.

The coefficients of Eq. (1) are presented in Table 2 also for three other systems which are component binaries of the ternary systems studied. We have checked some values of $H^{\rm E}$ for these systems using our calorimeter and our substances, and have found good agreement with the literature data used.

Fig. 1. Isoenthalpic curves of the excess enthalpy for the ternary system 1-butanol-2-butanol-n-heptane at 298.15 K calculated by UNIFAC(3Q).

Tables 3 and 4 present the ternary excess enthalpy data at 298.15 K for the systems 1-butanol-2-butanol-*n*-heptane and 1-hexanol-cyclohexanol-*n*-nonane, respectively.

4. Discussion

The positive excess enthalpies have been measured over the entire composition range of the system 1-hexanol-cyclohexanol-n-nonane and for most compositions of the system 1-butanol-2-butanol-n-heptane. For some compositions of the

Table 5

Mean percentage deviation $\delta(H^E)/\%$ between experimental ternary excess enthalpies and those predicted by Eq. (3) and UNIFAC(3Q)

System	Predicted by Eq. (3)	Predicted by UNIFAC(3Q)
1-Butanol-2-butanol- <i>n</i> -heptane	29.8	30.5 (OH(prim))
		11.6 $(OH(prim) + OH(sec))$
1-Hexanol-cyclohexanol-n-nonane	12.7	31.3 (OH(prim))
·		15.8 $(OH(prim) + OH(sec) + cOH)$
		6.5 $(OH(prim) + OH(sec) + cOH)$

Table 6

Groups		Parameters		Number of sets/points	$\delta(H^{ m E})/\%$	
S	t	$a_{\rm st}$	a _{ts}			
CH ₂	cCH ₂	- 35.15	52.31	4/83	7.5	
-	OH(prim)	459.84	- 169.83	10/122	16.4	
	OH(sec)	486.54	-136.71	9/140	16.2	
	cOH	328.41	-127.27	5/58	7.8	
cCH ₂	OH(prim)	375.81	-154.29	4/60	9.7	
	OH(sec)	375.58	-125.86	3/66	9.7	
	cOH	416.44	-144.75	4/78	9.7	
OH(prim)	OH(sec)	70.02	80.99	4/7	18.2	
	cOH	-16.89	4.57	1/13	3.5	

The UNIFAC(3Q) group interaction parameters a_{st}^{a} fitted to binary H^{E} data, the number of sets/points used for correlation and mean percentage deviation $\delta(H^{E})$

^a Determined using the trebled values of the surface area parameters of the original UNIFAC.

latter with a low content of *n*-heptane, the values of H^E are negative, because the mixing of 1- and 2-butanol is an exothermic process [3].

In Fig. 1 the isoenthalpic curves are shown as a function of composition for the system 1-butanol-2-butanol-*n*-heptane. It can be seen that in the vicinity of the 1-butanol-2-butanol axis there is the isoenthalpic curve of $H^E = 0$, splitting the triangle diagram into two parts, positive and negative.

The H^{E} data H^{E}_{123} for the ternary systems 1-butanol (1)-2-butanol (2)-*n*-heptane (3) and 1-hexanol (1)-cyclohexanol (2)-*n*-nonane (3) were predicted by the Redlich-Kister binary contribution equations

$$H_{123}^{\rm E} = H_{12}^{\rm E} + H_{23}^{\rm E} + H_{31}^{\rm E} \tag{3}$$

where H_{ik}^{E} are the binary contributions obtained on inserting mole fractions x_i and x_k of the ternary mixture into Eq. (1) using the coefficients given in Table 2.

The results are compared in Table 5 with those obtained by the UNIFAC version UNIFAC(3Q), taking into account the trebled values of the group surface area parameters Q_s of the original UNIFAC model. The notation used for the main groups is shown in Table 6 together with the group interaction parameters corresponding to the trebled values of Q_s .

The group interaction parameters were determined using the simplex method, the Nelder-Mead procedure described by Fredenslund et al. [7, p. 79], and the minimization function

$$F = \sum_{i=1}^{k} \left(\frac{H_{\exp}^{E} - H_{calc}^{E}}{H_{\exp}^{E}} \right)_{i}^{2}$$
(4)

where k is the overall number of experimental points.

Most of the experimental data used for a_{st} determination have been taken from H^{E} data collections [3–5]. Only the interaction parameters of the groups OH(prim)/ cOH were calculated from the measurement results obtained in this paper for the 1-hexanol-cyclohexanol system.

The different alcohol groups, OH(prim) in primary alcohols, OH(sec) in secondary ones, and cOH in cycloalkanols, were used to obtain more reliable results for the ternary systems studied. The values of the mean percentage deviation presented in Table 5 demonstrate the necessity and the validity of differentiation of these three types of hydroxyl group.

References

- [1] L. Kudryavtseva, M. Kuus and E. Siimer, Thermochim. Acta, 233 (1994) 199.
- [2] L. Kudryavtseva and E. Siimer, Thermochim. Acta, 237 (1994) 43.
- [3] V.P. Belousov, A.G. Morachevsky and M.Yu. Panov, Heat Properties of Non-electrolyte Mixtures (in Russian), Khimiya, Leningrad, 1981.
- [4] J. Gmehling and T. Holderbaum, Heats of Mixing Data Collection, DECHEMA Chemistry Data Ser., Vol. III, Part 3, Frankfurt am Main, Germany, 1988.
- [5] J. Gmehling and T. Holderbaum, Heats of Mixing Data Collection, DECHEMA Chemistry Data Ser., Vol. III, Part 4, Frankfurt am Main, Germany, 1991.
- [6] E. Siimer and L. Kudryavtseva, Thermochim. Acta, 240 (1994) 207.
- [7] A. Fredenslund, J. Gmehling and P. Rasmussen, Vapor-Liquid Equilibria Using UNIFAC, Elsevier, Amsterdam, 1977.